All 7 books come to ~1.75M tokens, so they don't quite fit yet. (At this rate of progress, mid-April should do it ) For now you can fit the first 4 books (~733K tokens).
Results: Opus 4.6 found 49 out of 50 officially documented spells across those 4 books. The only miss was "Slugulus Eructo" (a vomiting spell).
Freaking impressive!
> Version 2.1.32:
• Claude Opus 4.6 is now available!
• Added research preview agent teams feature for multi-agent collaboration (token-intensive feature, requires setting
CLAUDE_CODE_EXPERIMENTAL_AGENT_TEAMS=1)
• Claude now automatically records and recalls memories as it works
• Added "Summarize from here" to the message selector, allowing partial conversation summarization.
• Skills defined in .claude/skills/ within additional directories (--add-dir) are now loaded automatically.
• Fixed @ file completion showing incorrect relative paths when running from a subdirectory
• Updated --resume to re-use --agent value specified in previous conversation by default.
• Fixed: Bash tool no longer throws "Bad substitution" errors when heredocs contain JavaScript template literals like ${index + 1}, which
previously interrupted tool execution
• Skill character budget now scales with context window (2% of context), so users with larger context windows can see more skill descriptions
without truncation
• Fixed Thai/Lao spacing vowels (สระ า, ำ) not rendering correctly in the input field
• VSCode: Fixed slash commands incorrectly being executed when pressing Enter with preceding text in the input field
• VSCode: Added spinner when loading past conversations listThey are doing these broad marketing programs trying to take on ChatGPT for "normies". And yet their bread and butter is still clearly coding.
Meanwhile, Claude's general use cases are... fine. For generic research topics, I find that ChatGPT and Gemini run circles around it: in the depth of research, the type of tasks it can handle, and the quality and presentation of the responses.
Anthropic is also doing all of these goofy things to try to establish the "humanity" of their chatbot - giving it rights and a constitution and all that. Yet it weirdly feels the most transactional out of all of them.
Don't get me wrong, I'm a paying Claude customer and love what it's good at. I just think there's a disconnect between what Claude is and what their marketing department thinks it is.
A year or more ago, I read that both Anthropic and OpenAI were losing money on every single request even for their paid subscribers, and I don't know if that has changed with more efficient hardware/software improvements/caching.
What do you want to do?
1. Stop and wait for limit to reset
2. Switch to extra usage
3. Upgrade your plan
Enter to confirm · Esc to cancel
How come they don't have "Cancel your subscription and uninstall Claude Code"? Codex lasts for way longer without shaking me down for more money off the base $xx/month subscription.Installation instructions: https://code.claude.com/docs/en/overview#get-started-in-30-s...
But considering how SWE-Bench Verified seems to be the tech press' favourite benchmark to cite, it's surprising that they didn't try to confound the inevitable "Opus 4.6 Releases With Disappointing 0.1% DROP on SWE-Bench Verified" headlines.
It also seems misleading to have charts that compare to Sonnet 4.5 and not Opus 4.5 (Edit: It's because Opus 4.5 doesn't have a 1M context window).
It's also interesting they list compaction as a capability of the model. I wonder if this means they have RL trained this compaction as opposed to just being a general summarization and then restarting the agent loop.
The answer to "when is it cheaper to buy two singles rather than one return between Cambridge to London?" is available in sites such as BRFares, but no LLM can scrape it so it just makes up a generic useless answer.
I didn't see any notes but I guess this is also true for "max" effort level (https://code.claude.com/docs/en/model-config#adjust-effort-l...)? I only see low, medium and high.
Everything in plan mode first + AskUserQuestionTool, review all plans, get it to write its own CLAUDE.md for coding standards and edit where necessary and away you go.
Seems noticeably better than 4.5 at keeping the codebase slim. Obviously it still needs to be kept an eye on, but it's a step up from 4.5.
> Can you find an academic article that _looks_ legitimate -- looks like a real journal, by researchers with what look like real academic affiliations, has been cited hundreds or thousands of times -- but is obviously nonsense, e.g. has glaring typos in the abstract, is clearly garbled or nonsensical?
It pointed me to a bunch of hoaxes. I clarified:
> no, I'm not looking for a hoax, or a deliberate comment on the situation. I'm looking for something that drives home the point that a lot of academic papers that look legit are actually meaningless but, as far as we can tell, are sincere
It provided https://www.sciencedirect.com/science/article/pii/S246802302....
Close, but that's been retracted. So I asked for "something that looks like it's been translated from another language to english very badly and has no actual content? And don't forget the cited many times criteria. " And finally it told me that the thing I'm looking for probably doesn't exist.
For my tastes telling me "no" instead of hallucinating an answer is a real breakthrough.
Scalable Intelligence is just a wrapper for centralized power. All Ai companies are headed that way.
> Long-running conversations and agentic tasks often hit the context window. Context compaction automatically summarizes and replaces older context when the conversation approaches a configurable threshold, letting Claude perform longer tasks without hitting limits.
Not having to hand roll this would be incredible. One of the best Claude code features tbh.
1) how do you depreciate a new model? What is its useful life? (Only know this once you deprecate it)
2) how do you depreciate your hardware over the period you trained this model? Another big unknown and not known until you finally write the hardware off.
The easy thing to calculate is whether you are making money actually serving the model. And the answer is almost certainly yes they are making money from this perspective, but that’s missing a large part of the cost and is therefore wrong.
I had two different PRs with some odd edge case (thankfully catched by tests), 4.5 kept running in circles, kept creating test files and running `node -e` or `python 3` scripts all over and couldn't progress.
4.6 thought and thought in both cases around 10 minutes and found a 2 line fix for a very complex and hard to catch regression in the data flow without having to test, just thinking.
This gets repeated everywhere but I don't think it's true.
The company is unprofitable overall, but I don't see any reason to believe that their per-token inference costs are below the marginal cost of computing those tokens.
It is true that the company is unprofitable overall when you account for R&D spend, compensation, training, and everything else. This is a deliberate choice that every heavily funded startup should be making, otherwise you're wasting the investment money. That's precisely what the investment money is for.
However I don't think using their API and paying for tokens has negative value for the company. We can compare to models like DeepSeek where providers can charge a fraction of the price of OpenAI tokens and still be profitable. OpenAI's inference costs are going to be higher, but they're charging such a high premium that it's hard to believe they're losing money on each token sold. I think every token paid for moves them incrementally closer to profitability, not away from it.
Turns out there was a lot of low-hanging fruit in terms of inference optimization that hadn't been plucked yet.
> A year or more ago, I read that both Anthropic and OpenAI were losing money on every single request even for their paid subscribers
Where did you hear that? It doesn't match my mental model of how this has played out.
Local AI's make agent workflows a whole lot more practical. Making the initial investment for a good homelab/on-prem facility will effectively become a no-brainer given the advantages on privacy and reliability, and you don't have to fear rugpulls or VC's playing the "lose money on every request" game since you know exactly how much you're paying in power costs for your overall load.
Claude figured out zig’s ArrayList and io changes a couple weeks ago.
It felt like it got better then very dumb again the last few days.
Take critical thinking — genuinely questioning your own assumptions, noticing when a framing is wrong, deciding that the obvious approach to a problem is a dead end. Or creativity — not recombination of known patterns, but the kind of leap where you redefine the problem space itself. These feel like they involve something beyond "predict the next token really well, with a reasoning trace."
I'm not saying LLMs will never get there. But I wonder if getting there requires architectural or methodological changes we haven't seen yet, not just scaling what we have.
> Prefilling assistant messages (last-assistant-turn prefills) is not supported on Opus 4.6. Requests with prefilled assistant messages return a 400 error.
That was a really cool feature of the Claude API where you could force it to begin its response with e.g. `<svg` - it was a great way of forcing the model into certain output patterns.
They suggest structured outputs or system prompting as the alternative but I really liked the prefill method, it felt more reliable to me.
This is obviously not true, you can use real data and common sense.
Just look up a similar sized open weights model on openrouter and compare the prices. You'll note the similar sized model is often much cheaper than what anthropic/openai provide.
Example: Let's compare claude 4 models with deepseek. Claude 4 is ~400B params so it's best to compare with something like deepseek V3 which is 680B params.
Even if we compare the cheapest claude model to the most expensive deepseek provider we have claude charging $1/M for input and $5/M for output, while deepseek providers charge $0.4/M and $1.2/M, a fifth of the price, you can get it as cheap as $.27 input $0.4 output.
As you can see, even if we skew things overly in favor of claude, the story is clear, claude token prices are much higher than they could've been. The difference in prices is because anthropic also needs to pay for training costs, while openrouter providers just need to worry on making serving models profitable. Deepseek is also not as capable as claude which also puts down pressure on the prices.
There's still a chance that anthropic/openai models are losing money on inference, if for example they're somehow much larger than expected, the 400B param number is not official, just speculative from how it performs, this is only taking into account API prices, subscriptions and free user will of course skew the real profitability numbers, etc.
Price sources:
I'm curious what others think about these? There are only 8 tasks there specifically for coding
But it takes lot of context as a experimental feature.
Use self-learning loop with hooks and claude.md to preserve memory.
I have shared plugin above of my setup. Try it.
Agent teams in this release is mcp-agent-mail [1] built into
the runtime. Mailbox, task list, file locking — zero config,
just works. I forked agent-mail [2], added heartbeat/presence
tracking, had a PR upstream [3] when agent teams dropped. For
coordinating Claude Code instances within a session, the
built-in version wins on friction alone.
Where it stops: agent teams is session-scoped. I run Claude
Code during the day, hand off to Codex overnight, pick up in
the morning. Different runtimes, async, persistent. Agent
teams dies when you close the terminal — no cross-tool
messaging, no file leases, no audit trail that outlives the
session.
What survives sherlocking is whatever crosses the runtime
boundary. The built-in version will always win inside its own
walls — less friction, zero setup. The cross-tool layer is
where community tooling still has room. Until that gets
absorbed too.
[1] https://github.com/Dicklesworthstone/mcp_agent_mail
[2] https://github.com/anupamchugh/mcp_agent_mail
[3]
https://github.com/Dicklesworthstone/mcp_agent_mail/pull/77This never happened with Opus 4.5 despite a lot of usage.
5.2 (and presumably 5.3) is really smart though and feels like it has higher "raw" intelligence.
Opus feels like a better model to talk to, and does a much better job at non-coding tasks especially in the Claude Desktop app.
Here's an example prompt where Opus in Claude put in a lot more effort and did a better job than GPT5.2 Thinking in ChatGPT:
`find all the pure software / saas stocks on the nyse/nasdaq with at least $10B of market cap. and give me a breakdown of their performance over the last 2 years, 1 year and 6 months. Also find their TTM and forward PE`
Opus usage limits are a bummer though and I am conditioned to reach for Codex/ChatGPT for most trivial stuff.
Works out in Anthropic's favor, as long as I'm subscribed to them.
My standard test for that was "Who ends up with Bilbo's buttons?"
I guess they have to add more questions as these context windows get bigger.
They got surprisingly far, but i did need to iterate a few times to have it build tools that would check for things like; dont put walls on roads or water.
What I think might be the next obstacle is self-knowledge. The new agents seem to have picked up ever more vocabulary about their context and compaction, etc.
As a next benchmark you could try having 1 agent and tell it to use a coding agent (via tmux) to build you a pelican.
It also has a habit of "running wild". If I say "first, verify you understand everything and then we will implement it."
Well, it DOES output its understanding of the issue. And it's pretty spot-on on the analysis of the issue. But, importantly, it did not correctly intuit my actual request: "First, explain your understanding of this issue to me so I can validate your logic. Then STOP, so I can read it and give you the go ahead to implement."
I think the main issue we are going to see with Opus 4.6 is this "running wild" phenomenon, which is step 1 of the eternal paperclip optimizer machine. So be careful, especially when using "auto accept edits"
The one bone I'll throw it was that I was asking it to edit its own MCP configs. So maybe it got thoroughly confused?
I dunno what's going on, I'm going to give it the night. It makes no sense whatsoever.
It is very impressive though.
> The smug look on Malfoy’s face flickered.
> “No one asked your opinion, you filthy little Mudblood,” he spat.
> Harry knew at once that Malfoy had said something really bad because there was an instant uproar at his words. Flint had to dive in front of Malfoy to stop Fred and George jumping on him, Alicia shrieked, “How dare you!”, and Ron plunged his hand into his robes, pulled out his wand, yelling, “You’ll pay for that one, Malfoy!” and pointed it furiously under Flint’s arm at Malfoy’s face.
> A loud bang echoed around the stadium and a jet of green light shot out of the wrong end of Ron’s wand, hitting him in the stomach and sending him reeling backward onto the grass.
> “Ron! Ron! Are you all right?” squealed Hermione.
> Ron opened his mouth to speak, but no words came out. Instead he gave an almighty belch and several slugs dribbled out of his mouth onto his lap.
Neat: https://code.claude.com/docs/en/memory
I guess it's kind of like Google Antigravity's "Knowledge" artifacts?
How do you know? Each word is one token?
Seems like 4.6 is still all-around better?
> Turns out there was a lot of low-hanging fruit in terms of inference optimization that hadn't been plucked yet.
That does not mean the frontier labs are pricing their APIs to cover their costs yet.
It can both be true that it has gotten cheaper for them to provide inference and that they still are subsidizing inference costs.
In fact, I'd argue that's way more likely given that has been precisely the goto strategy for highly-competitive startups for awhile now. Price low to pump adoption and dominate the market, worry about raising prices for financial sustainability later, burn through investor money until then.
What no one outside of these frontier labs knows right now is how big the gap is between current pricing and eventual pricing.
Also, is it bad that I almost immediately noticed that both of the pelican's legs are on the same side of the bicycle, but I had to look up an image on Wikipedia to confirm that they shouldn't have long necks?
Also, have you tried iterating prompts on this test to see if you can get more realistic results? (How much does it help to make them look up reference images first?)
My experience is the opposite, it is the only LLM I find remotely tolerable to have collaborative discussions with like a coworker, whereas ChatGPT by far is the most insufferable twat constantly and loudly asking to get punched in the face.
Nothing.
You can be sure that this was already known in the training data of PDFs, books and websites that Anthropic scraped to train Claude on; hence 'documented'. This is why tests like what the OP just did is meaningless.
Such "benchmarks" are performative to VCs and they do not ask why isn't the research and testing itself done independently but is almost always done by their own in-house researchers.
This is unlike their previous generation of models and their competitors.
What does this indicate?
They can chain events together as a sequence, but they don’t have temporal coherence. For those that are born with dimensional privilege “Do X, discuss, then do Y” implies time passing between events, but to a model it’s all a singular event at t=0. The system pressed “3 +” on a calculator and your input presses a number and “=“. If you see the silliness in telling it “BRB” then you’ll see the silliness in foreshadowing ill-defined temporal steps. If it CAN happen in a single response then it very well might happen.
“
Agenda for today at 12pm:
1. Read junk.py
2. Talk about it for 20 minutes
3. Eat lunch for an hour
4. Decide on deleting junk.py
“
<response>
12:00 - I just read junk.py.
12:00-12:20 - Oh wow it looks like junk, that’s for sure.
12:20-1:20 - I’m eating lunch now. Yum.
1:20 - I’ve decided to delete it, as you instructed. {delete junk.py}
</response>
Because of course, right? What does “talk about it” mean beyond “put some tokens here too”?
If you want it to stop reliably you have to make it output tokens whose next most probable token is EOS (end). Meaning you need it to say what you want, then say something else where the next most probable token after it is <null>.
I’ve tested well over 1,000 prompts on Opus 4.0-4.5 for the exact issue you’re experiencing. The test criteria was having it read a Python file that desperately needs a hero, but without having it immediately volunteer as tribute and run off chasing a squirrel() into the woods.
With thinking enabled the temperature is 1.0, so randomness is maximized, and that makes it easy to find something that always sometimes works unless it doesn’t. “Read X and describe what you see.” - That worked very well with Opus 4.0. Not “tell me what you see”, “explain it”, “describe it”, “then stop”, “then end your response”, or any of hundreds of others. “Describe what you see” worked particularly well at aligning read file->word tokens->EOS… in 176/200 repetitions of the exact same prompt.
What worked 200/200 on all models and all generations? “Read X then halt for further instructions.” The reason that works has nothing to do with the model excitedly waiting for my next utterance, but rather that the typical response tokens for that step are “Awaiting instructions.” and the next most probable token after that is: nothing. EOS.
``` claude --model claude-opus-4-5-20251101 ```
I will probably work with Opus 4.5 tomorrow to get some work done and maybe try 4.6 again later.
Theres a trade off going on - in order to handle more nuance/subtleties, the models are more likely to be wrong in their outputs and need more steering. This is why personally my use of them has reduced dramatically for what I do.
$200 * 1,000 = $200k/month.
I'm not saying they are, but to say that they aren't with such certainty, when money is on the line; unless you have some insider knowledge you'd like to share with the rest of the class, it seems like an questionable conclusion.
https://youtu.be/8brENzmq1pE?t=1544
I feel like everyone is counting chickens before they hatch here with all the doomsday predictions and extrapolating LLM capability into infinity.
People that seem to overhype this seem to either be non-technical or are just making landing pages.
It's all anecdata--I'm convinced anecdata is the least bad way to evaluate these models, benchmarks don't work--but this is the behavior I've come to expect from earlier Claude models as well, especially after several back and forth passes where you rejected the initial answers. I don't think it's new.
The location might still be on your disk if you can pull up the original Claude JSOn and put it through some `jq` and see what pages it went through to give you and what it did.
Basically they managed with some tricks make 99% word for word - tricks were needed to bypass security measures that are there in place for exactly reason to stop people to retrieve training material.
In support of that hypothesis, the Fandom site lists it as “mentioned” in Half-Blood Prince, but it says nothing else and I'm traveling and don't have a copy to check, so not sure.
I asked Opus 4.6 for a pelican riding a recumbent bicycle and got this.
Codex (by openai ironically) seems to be the fastest/most-responsive, opens instantly and is written in rust but doesn't contain that many features
Claude opens in around 3-4 seconds
Opencode opens in 2 seconds
Gemini-cli is an abomination which opens in around 16 second for me right now, and in 8 seconds on a fresh install
Codex takes 50ms for reference...
--
If their models are so good, why are they not rewriting their own react in cli bs to c++ or rust for 100x performance improvement (not kidding, it really is that much)
React itself is a frontend-agnostic library. People primarily use it for writing websites but web support is actually a layer on top of base react and can be swapped out for whatever.
So they’re really just using react as a way to organize their terminal UI into components. For the same reason it’s handy to organize web ui into components.
That doesn't mean you have to, but I'm curious why you think it's behind in the personal assistant game.
And if you've worked with pytorch models a lot, having custom fused kernels can be huge. For instance, look at the kind of gains to be had when FlashAttention came out.
This isn't just quantization, it's actually just better optimization.
Even when it comes to quantization, Blackwell has far better quantization primitives and new floating point types that support row or layer-wise scaling that can quantize with far less quality reduction.
There is also a ton of work in the past year on sub-quadratic attention for new models that gets rid of a huge bottleneck, but like quantization can be a tradeoff, and a lot of progress has been made there on moving the Pareto frontier as well.
It's almost like when you're spending hundreds of billions on capex for GPUs, you can afford to hire engineers to make them perform better without just nerfing the models with more quantization.
They are for sure subsidising costs on all you can prompt packages (20-100-200$ /mo). They do that for data gathering mostly, and at a smaller degree for user retention.
> evidence at all that Anthropic or OpenAI is able to make money on inference yet.
You can infer that from what 3rd party inference providers are charging. The largest open models atm are dsv3 (~650B params) and kimi2.5 (1.2T params). They are being served at 2-2.5-3$ /Mtok. That's sonnet / gpt-mini / gemini3-flash price range. You can make some educates guesses that they get some leeway for model size at the 10-15$/ Mtok prices for their top tier models. So if they are inside some sane model sizes, they are likely making money off of token based APIs.
This is all straight out of the playbook. Get everyone hooked on your product by being cheap and generous.
Raise the price to backpay what you gave away plus cover current expenses and profits.
In no way shape or form should people think these $20/mo plans are going to be the norm. From OpenAI's marketing plan, and a general 5-10 year ROI horizon for AI investment, we should expect AI use to cost $60-80/mo per user.
As an example, I asked it to commit everything in the worktree. I stressed everything and prompted it very explicitly, because even 4.5 sometimes likes to say, "I didn't do that other stuff, I'm only going to commit my stuff even though he said everything".
It still only committed a few things.
I had to ask again.
And again.
I had to ask four times, with increasing amounts of expletives and threats in order to finally see a clean worktree. I was worried at some point it was just going to solve the problem by cleaning the workspace without even committing.
4.5 is way easier to steer, despite its warts.
It gives you a convenient way to say "remember this bug for me, we should fix tomorrow". I'll be playing around with it more for sure.
I asked Claude to give me a TLDR (condensed from its system prompt):
----
Persistent directory at ~/.claude/projects/{project-path}/memory/, persists across conversations
MEMORY.md is always injected into the system prompt; truncated after 200 lines, so keep it concise
Separate topic files for detailed notes, linked from MEMORY.md What to record: problem constraints, strategies that worked/failed, lessons learned
Proactive: when I hit a common mistake, check memory first - if nothing there, write it down
Maintenance: update or remove memories that are wrong or outdated
Organization: by topic, not chronologically
Tools: use Write/Edit to update (so you always see the tool calls)
To me, their claim that they are vibe coding Claude code isn’t the flex they think it is.
I find it harder and harder to trust anthropic for business related use and not just hobby tinkering. Between buggy releases, opaque and often seemingly glitches rate limits and usage limits, and the model quality inconsistency, it’s just not something I’d want to bet a business on.
Their limit system is so bad.
Have you tried actually prompting this? It works.
They can give you lots of creative options about how to redefine a problem space, with potential pros and cons of different approaches, and then you can further prompt to investigate them more deeply, combine aspects, etc.
So many of the higher-level things people assume LLM's can't do, they can. But they don't do them "by default" because when someone asks for the solution to a particular problem, they're trained to by default just solve the problem the way it's presented. But you can just ask it to behave differently and it will.
If you want it to think critically and question all your assumptions, just ask it to. It will. What it can't do is read your mind about what type of response you're looking for. You have to prompt it. And if you want it to be super creative, you have to explicitly guide it in the creative direction you want.
In my experience, if you do present something in the context window that is sparse in the training, there's no depth to it at all, only what you tell it. And, it will always creep towards/revert to the nearest statistically significant answers, with claims of understanding and zero demonstration of that understanding.
And, I'm talking about relatives basic engineering type problems here.
But I may easily be massively underestimating the difficulty. Though in any case I don't think it affects the timelines that much. (personal opinions obviously)
I would rather spend money on some pseudo-local inference (when cloud company manages everything for me and I just can specify some open source model and pay for GPU usage).
> Borges's "review" describes Menard's efforts to go beyond a mere "translation" of Don Quixote by immersing himself so thoroughly in the work as to be able to actually "re-create" it, line for line, in the original 17th-century Spanish. Thus, Pierre Menard is often used to raise questions and discussion about the nature of authorship, appropriation, and interpretation.
> Ron nodded but did not speak. Harry was reminded forcibly of the time that Ron had accidentally put a slug-vomiting charm on himself. He looked just as pale and sweaty as he had done then, not to mention as reluctant to open his mouth.
There could be something with regional variants but I'm doubtful as the Fandom site uses LEGO Harry Potter: Years 1-4 as the citation of the spell instead of a book.
Maybe the real LLM is the universe and we're figuring this out for someone on Slacker News a level up!
[1] https://github.com/ggml-org/llama.cpp/blob/master/grammars/R...
In other words, it's not just the model size, but also concurrent load and how many gpus do you turn on at any time. I bet the big players' cost is quite a bit higher than the numbers on openrouter, even for comparable model parameters.
Imagine 2 models where when asking a yes or no question the first model just outputs a single yes or no then but the second model outputs a 10 page essay and then either yes or no. They could have the same price per token but ultimately one will be cheaper to ask questions to.
> The user wants a real, sincere academic paper that looks legitimate — proper journal, real authors with real affiliations, many citations — but is obviously nonsense or garbled. Not a hoax or deliberate prank, but something that was genuinely submitted and published, yet is clearly meaningless if you actually read it. Let me think about what I know and search for examples. There are some famous cases:
> Papers generated by AI/GPT that slipped through - there have been reports of papers with phrases like "Certainly, here is a possible introduction for your topic" or "As an AI language model..." > There have been papers with obvious tortured phrases - "sham" papers that use synonym substitution to avoid plagiarism detection, producing phrases like "sheep pursuing" instead of "shepherd" or "big data" becoming "large information" I'm also thinking of papers that made it through peer review despite being complete gibberish, like the famous SCIgen computer-generated papers that fooled conferences, or papers where the abstract and content don't match at all.
> Now I'm trying to recall specific real examples that fit this criteria — published papers that are genuinely incoherent or nonsensical but appeared in legitimate venues.
This is maybe not the _exhaustive_ search strategy I would have liked, but it's probably something you would do if you were limited to just a certain amount of effort on a task.
The articles it provided where the AI prompts were left in the text were definitely in the right ballpark, although I do wonder if chatbots mean, going forward, we'll see fewer errors in the "WTF are you even talking about" category which, I must say, were typically funnier and more interesting than just the generic blather of "what a great point. It's not X -- it's Y."
Actually "no, this is not something within the known corpus of this LLM, or the policy of its owners prevent to disclose it" would be one of the most acceptable answer that could be delivered, which should cover most cases in honest reply.
> Unable to process - no bug report provided. Please share the issue details you'd like me to convert into a GitHub issue title
Nowadays, I have often seen LLMs (Opus 4.5) give up on their original ideas and assumptions. Sometimes I tell them what I think the problem is, and they look at it, test it out, and decide I was wrong (and I was).
There are still times where they get stuck on an idea, but they are becoming increasingly rare.
Therefore, think that modern LLMs clearly are already able to question their assumptions and notice when framing is wrong. In fact, they've been invaluable to me in fixing complicated bugs in minutes instead of hours because of how much they tend to question many assumptions and throw out hypotheses. They've helped _me_ question some of my assumptions.
They're inconsistent, but they have been doing this. Even to my surprise.
I don't think there's anything you can't do by "predicting the next token really well". It's an extremely powerful and extremely general mechanism. Saying there must be "something beyond that" is a bit like saying physical atoms can't be enough to implement thought and there must be something beyond the physical. It underestimates the nearly unlimited power of the paradigm.
Besides, what is the human brain if not a machine that generates "tokens" that the body propagates through nerves to produce physical actions? What else than a sequence of these tokens would a machine have to produce in response to its environment and memory?
(I'm from OpenAI.)
However it's possible that consumers without a sufficiently tiered plan aren't getting optimal performance, or that the benchmark is overfit and the results won't generalize well to the real tasks you're trying to do.
Otherwise, LLMs have most of the books memorised anyway: https://arstechnica.com/features/2025/06/study-metas-llama-3...
Shoot, I'd even go so far as to write a script that takes in a bunch of text, reorganizes sentences, and outputs them in a random order with the secrets. Kind of like a "Where's Waldo?", but for text
Just a few casual thoughts.
I'm actually thinking about coming up with some interesting coding exercises that I can run across all models. I know we already have benchmarks, however some of the recent work I've done has really shown huge weak points in every model I've run them on.
I've used it myself. It has some rough edges in terms of rendering performance but it's nice overall.
It isn't "common sense" at all. You're comparing several companies losing money, to one another, and suggesting that they're obviously making money because one is under-cutting another more aggressively.
LLM/AI ventures are all currently under-water with massive VC or similar money flowing in, they also all need training data from users, so it is very reasonable to speculate that they're in loss-leader mode.
I wish I remembered the exact versions involved. I mostly just recall how pissed I was that it was fighting me on changing a single line in my go.mod.
Edit: to give you the benefit of doubt, it probably depends on whether the answer was a definitive “this does not exist” or “I couldn’t find it and it may not exist”
React fixes issues with the DOM being too slow to fully re-render the entire webpage every time a piece of state changes. That doesn't apply in a TUI, you can re-render TUIs faster than the monitor can refresh. There's no need to selectively re-render parts of the UI, you can just re-render the entire thing every time something changes without even stressing out the CPU.
It brings in a bunch of complexity that doesn't solve any real issues beyond the devs being more familiar with React than a TUI library.
Who cares, and why?
All of the major providers' CLI harnesses use Ink: https://github.com/vadimdemedes/ink
Calling it part of the Sonnet line would not provide the same level of blind buy in as calling it part of the Opus line does
Its a weapon who's target is the working class. How does no one realize this yet?
Don't give them money, code it yourself, you might be surprised how much quality work you can get done!
Unlike what another commenter suggested, this is a complex tool. I'm curious whether the codebase might eventually reach a point where it becomes unfixable; even with human assistance. That would be an interesting development. We'll see.
We’re upgrading our smartest model.
The new Claude Opus 4.6 improves on its predecessor’s coding skills. It plans more carefully, sustains agentic tasks for longer, can operate more reliably in larger codebases, and has better code review and debugging skills to catch its own mistakes. And, in a first for our Opus-class models, Opus 4.6 features a 1M token context window in beta.
Opus 4.6 can also apply its improved abilities to a range of everyday work tasks: running financial analyses, doing research, and using and creating documents, spreadsheets, and presentations. Within Cowork, where Claude can multitask autonomously, Opus 4.6 can put all these skills to work on your behalf.
The model’s performance is state-of-the-art on several evaluations. For example, it achieves the highest score on the agentic coding evaluation Terminal-Bench 2.0 and leads all other frontier models on Humanity’s Last Exam, a complex multidisciplinary reasoning test. On GDPval-AA—an evaluation of performance on economically valuable knowledge work tasks in finance, legal, and other domains1—Opus 4.6 outperforms the industry’s next-best model (OpenAI’s GPT-5.2) by around 144 Elo points,2 and its own predecessor (Claude Opus 4.5) by 190 points. Opus 4.6 also performs better than any other model on BrowseComp, which measures a model’s ability to locate hard-to-find information online.
As we show in our extensive system card, Opus 4.6 also shows an overall safety profile as good as, or better than, any other frontier model in the industry, with low rates of misaligned behavior across safety evaluations.
In Claude Code, you can now assemble agent teams to work on tasks together. On the API, Claude can use compaction to summarize its own context and perform longer-running tasks without bumping up against limits. We’re also introducing adaptive thinking, where the model can pick up on contextual clues about how much to use its extended thinking, and new effort controls to give developers more control over intelligence, speed, and cost.
We’ve made substantial upgrades to Claude in Excel, and we’re releasing Claude in PowerPoint in a research preview. This makes Claude much more capable for everyday work.
Claude Opus 4.6 is available today on claude.ai, our API, and all major cloud platforms. If you’re a developer, use claude-opus-4-6 via the Claude API. Pricing remains the same at $5/$25 per million tokens; for full details, see our pricing page.
We cover the model, our new product updates, our evaluations, and our extensive safety testing in depth below.
We build Claude with Claude. Our engineers write code with Claude Code every day, and every new model first gets tested on our own work. With Opus 4.6, we’ve found that the model brings more focus to the most challenging parts of a task without being told to, moves quickly through the more straightforward parts, handles ambiguous problems with better judgment, and stays productive over longer sessions.
Opus 4.6 often thinks more deeply and more carefully revisits its reasoning before settling on an answer. This produces better results on harder problems, but can add cost and latency on simpler ones. If you’re finding that the model is overthinking on a given task, we recommend dialing effort down from its default setting (high) to medium. You can control this easily with the /effort parameter.
Here are some of the things our Early Access partners told us about Claude Opus 4.6, including its propensity to work autonomously without hand-holding, its success where previous models failed, and its effect on how teams work:
Claude Opus 4.6 is the strongest model Anthropic has shipped. It takes complicated requests and actually follows through, breaking them into concrete steps, executing, and producing polished work even when the task is ambitious. For Notion users, it feels less like a tool and more like a capable collaborator.
Early testing shows Claude Opus 4.6 delivering on the complex, multi-step coding work developers face every day—especially agentic workflows that demand planning and tool calling. This starts unlocking long-horizon tasks at the frontier.
Claude Opus 4.6 is a huge leap for agentic planning. It breaks complex tasks into independent subtasks, runs tools and subagents in parallel, and identifies blockers with real precision.
Claude Opus 4.6 is the best model we've tested yet. Its reasoning and planning capabilities have been exceptional at powering our AI Teammates. It's also a fantastic coding model – its ability to navigate a large codebase and identify the right changes to make is state of the art.
Claude Opus 4.6 reasons through complex problems at a level we haven't seen before. It considers edge cases that other models miss and consistently lands on more elegant, well-considered solutions. We're particularly impressed with Opus 4.6 in Devin Review, where it's increased our bug catching rates.
Claude Opus 4.6 feels noticeably better than Opus 4.5 in Windsurf, especially on tasks that require careful exploration like debugging and understanding unfamiliar codebases. We’ve noticed Opus 4.6 thinks longer, which pays off when deeper reasoning is needed.
Claude Opus 4.6 represents a meaningful leap in long-context performance. In our testing, we saw it handle much larger bodies of information with a level of consistency that strengthens how we design and deploy complex research workflows. Progress in this area gives us more powerful building blocks to deliver truly expert-grade systems professionals can trust.
Across 40 cybersecurity investigations, Claude Opus 4.6 produced the best results 38 of 40 times in a blind ranking against Claude 4.5 models. Each model ran end to end on the same agentic harness with up to 9 subagents and 100+ tool calls.
Claude Opus 4.6 is the new frontier on long-running tasks from our internal benchmarks and testing. It's also been highly effective at reviewing code.
Claude Opus 4.6 achieved the highest BigLaw Bench score of any Claude model at 90.2%. With 40% perfect scores and 84% above 0.8, it’s remarkably capable for legal reasoning.
Claude Opus 4.6 autonomously closed 13 issues and assigned 12 issues to the right team members in a single day, managing a ~50-person organization across 6 repositories. It handled both product and organizational decisions while synthesizing context across multiple domains, and it knew when to escalate to a human.
Claude Opus 4.6 is an uplift in design quality. It works beautifully with our design systems and it’s more autonomous, which is core to Lovable’s values. People should be creating things that matter, not micromanaging AI.
Claude Opus 4.6 excels in high-reasoning tasks like multi-source analysis across legal, financial, and technical content. Box’s eval showed a 10% lift in performance, reaching 68% vs. a 58% baseline, and near-perfect scores in technical domains.
Claude Opus 4.6 generates complex, interactive apps and prototypes in Figma Make with an impressive creative range. The model translates detailed designs and multi-layered tasks into code on the first try, making it a powerful starting point for teams to explore and build ideas.
Claude Opus 4.6 is the best Anthropic model we’ve tested. It understands intent with minimal prompting and went above and beyond, exploring and creating details I didn’t even know I wanted until I saw them. It felt like I was working with the model, not waiting on it.
Both hands-on testing and evals show Claude Opus 4.6 is a meaningful improvement for design systems and large codebases, use cases that drive enormous enterprise value. It also one-shotted a fully functional physics engine, handling a large multi-scope task in a single pass.
Claude Opus 4.6 is the biggest leap I’ve seen in months. I’m more comfortable giving it a sequence of tasks across the stack and letting it run. It’s smart enough to use subagents for the individual pieces.
Claude Opus 4.6 handled a multi-million-line codebase migration like a senior engineer. It planned up front, adapted its strategy as it learned, and finished in half the time.
We only ship models in v0 when developers will genuinely feel the difference. Claude Opus 4.6 passed that bar with ease. Its frontier-level reasoning, especially with edge cases, helps v0 to deliver on our number-one aim: to let anyone elevate their ideas from prototype to production.
The performance jump with Claude Opus 4.6 feels almost unbelievable. Real-world tasks that were challenging for Opus [4.5] suddenly became easy. This feels like a watershed moment for spreadsheet agents on Shortcut.
01 /
20
Across agentic coding, computer use, tool use, search, and finance, Opus 4.6 is an industry-leading model, often by a wide margin. The table below shows how Claude Opus 4.6 compares to our previous models and to other industry models on a variety of benchmarks.

Opus 4.6 is much better at retrieving relevant information from large sets of documents. This extends to long-context tasks, where it holds and tracks information over hundreds of thousands of tokens with less drift, and picks up buried details that even Opus 4.5 would miss.
A common complaint about AI models is “context rot,” where performance degrades as conversations exceed a certain number of tokens. Opus 4.6 performs markedly better than its predecessors: on the 8-needle 1M variant of MRCR v2—a needle-in-a-haystack benchmark that tests a model’s ability to retrieve information “hidden” in vast amounts of text—Opus 4.6 scores 76%, whereas Sonnet 4.5 scores just 18.5%. This is a qualitative shift in how much context a model can actually use while maintaining peak performance.
All in all, Opus 4.6 is better at finding information across long contexts, better at reasoning after absorbing that information, and has substantially better expert-level reasoning abilities in general.
Finally, the charts below show how Claude Opus 4.6 performs on a variety of benchmarks that assess its software engineering skills, multilingual coding ability, long-term coherence, cybersecurity capabilities, and its life sciences knowledge.
These intelligence gains do not come at the cost of safety. On our automated behavioral audit, Opus 4.6 showed a low rate of misaligned behaviors such as deception, sycophancy, encouragement of user delusions, and cooperation with misuse. Overall, it is just as well-aligned as its predecessor, Claude Opus 4.5, which was our most-aligned frontier model to date. Opus 4.6 also shows the lowest rate of over-refusals—where the model fails to answer benign queries—of any recent Claude model.

The overall misaligned behavior score for each recent Claude model on our automated behavioral audit (described in full in the Claude Opus 4.6 system card).
For Claude Opus 4.6, we ran the most comprehensive set of safety evaluations of any model, applying many different tests for the first time and upgrading several that we’ve used before. We included new evaluations for user wellbeing, more complex tests of the model’s ability to refuse potentially dangerous requests, and updated evaluations of the model’s ability to surreptitiously perform harmful actions. We also experimented with new methods from interpretability, the science of the inner workings of AI models, to begin to understand why the model behaves in certain ways—and, ultimately, to catch problems that standard testing might miss.
A detailed description of all capability and safety evaluations is available in the Claude Opus 4.6 system card.
We’ve also applied new safeguards in areas where Opus 4.6 shows particular strengths that might be put to dangerous as well as beneficial uses. In particular, since the model shows enhanced cybersecurity abilities, we’ve developed six new cybersecurity probes—methods of detecting harmful responses—to help us track different forms of potential misuse.
We’re also accelerating the cyber_defensive_ uses of the model, using it to help find and patch vulnerabilities in open-source software (as we describe in our new cybersecurity blog post). We think it’s critical that cyberdefenders use AI models like Claude to help level the playing field. Cybersecurity moves fast, and we’ll be adjusting and updating our safeguards as we learn more about potential threats; in the near future, we may institute real-time intervention to block abuse.
We’ve made substantial updates across Claude, Claude Code, and the Claude Developer Platform to let Opus 4.6 perform at its best.
Claude Developer Platform
On the API, we’re giving developers better control over model effort and more flexibility for long-running agents. To do so, we’re introducing the following features:
Product updates
Across Claude and Claude Code, we’ve added features that allow knowledge workers and developers to tackle harder tasks with more of the tools they use every day.
We’ve introduced agent teams in Claude Code as a research preview. You can now spin up multiple agents that work in parallel as a team and coordinate autonomously—best for tasks that split into independent, read-heavy work like codebase reviews. You can take over any subagent directly using Shift+Up/Down or tmux.
Claude now also works better with the office tools you already use. Claude in Excel handles long-running and harder tasks with improved performance, and can plan before acting, ingest unstructured data and infer the right structure without guidance, and handle multi-step changes in one pass. Pair that with Claude in PowerPoint, and you can first process and structure your data in Excel, then bring it to life visually in PowerPoint. Claude reads your layouts, fonts, and slide masters to stay on brand, whether you’re building from a template or generating a full deck from a description. Claude in PowerPoint is now available in research preview for Max, Team, and Enterprise plans.
[1] Run independently by Artificial Analysis. See here for full methodological details.
[2] This translates into Claude Opus 4.6 obtaining a higher score than GPT-5.2 on this eval approximately 70% of the time (where 50% of the time would have implied parity in the scores).
top_p. The model was also given a “think” tool that allowed interleaved thinking for multi-turn evaluations.We’ve made a choice: Claude will remain ad-free. We explain why advertising incentives are incompatible with a genuinely helpful AI assistant, and how we plan to expand access without compromising user trust.
I think when I first tried this I iterated a few times to get to something that reliably output SVG, but honestly I didn't keep the notes I should ahve.
It is essentially a big game of venture capital chicken at present.
Except that newer "agent swarm" workflows do exactly that. Besides, batching requests generally comes with a sizeable increase in memory footprint, and memory is often the main bottleneck especially with the larger contexts that are typical of agent workflows. If you have plenty of agentic tasks that are not especially latency-critical and don't need the absolutely best model, it makes plenty of sense to schedule these for running locally.
Curious to see how things will be with 5.3 and 4.6
I think a lot of people are concerned due to 1) significant variance in performance being reported by a large number of users, and 2) We have specific examples of OpenAI and other labs benchmaxxing in the recent past (https://grok.com/share/c2hhcmQtMw_66c34055-740f-43a3-a63c-4b...).
It's tricky because there are so many subtle ways in which "the numbers are all real" could be technically true in some sense, yet still not reflect what a customer will experience (eg harnesses, etc). And any of those ways can benefit the cost structures of companies currently subsidizing models well below their actual costs with limited investor capital. All with billions of dollars in potential personal wealth at stake for company employees and dozens of hidden cost/performance levers at their disposal.
And it doesn't even require overt deception on anyone's part. For example, the teams doing benchmark testing of unreleased new models aren't the same people as the ops teams managing global deployment/load balancing at scale day-to-day. If there aren't significant ongoing resources devoted to specifically validating those two things remain in sync - they'll almost certainly drift apart. And it won't be anyone's job to even know it's happening until a meaningful number of important customers complain or sales start to fall. Of course, if an unplanned deviation causes costs to rise over budget, it's a high-priority bug to be addressed. But if the deviation goes the other way and costs are little lower than expected, no one's getting a late night incident alert. This isn't even a dig at OpenAI in particular, it's just the default state of how large orgs work.
swe bench pro public is newer, but its not live, so it will get slowly memorized as well. the private dataset is more interesting, as are the results there:
Memory comparison of AI coding CLIs (single session, idle):
| Tool | Footprint | Peak | Language |
|-------------|-----------|--------|---------------|
| Codex | 15 MB | 15 MB | Rust |
| OpenCode | 130 MB | 130 MB | Go |
| Claude Code | 360 MB | 746 MB | Node.js/React |
That's a 24x to 50x difference for tools that do the same thing: send text to an API.vmmap shows Claude Code reserves 32.8 GB virtual memory just for the V8 heap, has 45% malloc fragmentation, and a peak footprint of 746 MB that never gets released, classic leak pattern.
On my 16 GB Mac, a "normal" workload (2 Claude sessions + browser + terminal) pushes me into 9.5 GB swap within hours. My laptop genuinely runs slower with Claude Code than when I'm running local LLMs.
I get that shipping fast matters, but building a CLI with React and a full Node.js runtime is an architectural choice with consequences. Codex proves this can be done in 15 MB. Every Claude Code session costs me 360+ MB, and with MCP servers spawning per session, it multiplies fast.
The same is happening in AI research now.
[1] https://epochai.substack.com/p/can-ai-companies-become-profi...
This prompt will work better across any/all models.
Ah yes, the brain is as simple as predicting the next token, you just cracked what neuroscientists couldn't for years.
yet - given an existing codebase (even not huge) they often won't suggest "we need to restructure this part differently to solve this bug". Instead they tend to push forward.
I create a git worktree, start Claude Code in that tree, and delete after. I notice each worktree gets a memory directory in this location. So is memory fragmented and not combined for the "main" repo?
Grok and Deepmind IIRC didn’t require tricks.
Anthropic planning an IPO this year is a broad meta-indicator that internally they believe they'll be able to reach break-even sometime next year on delivering a competitive model. Of course, their belief could turn out to be wrong but it doesn't make much sense to do an IPO if you don't think you're close. Assuming you have a choice with other options to raise private capital (which still seems true), it would be better to defer an IPO until you expect quarterly numbers to reach break-even or at least close to it.
Despite the willingness of private investment to fund hugely negative AI spend, the recently growing twitchiness of public markets around AI ecosystem stocks indicates they're already worried prices have exceeded near-term value. It doesn't seem like they're in a mood to fund oceans of dotcom-like red ink for long.
> there are approximately 200k common nouns in English, and then we square that, we get 40 billion combinations. At one second per, that's ~1200 years, but then if we parallelize it on a supercomputer that can do 100,000 per second that would only take 3 days. Given that ChatGPT was trained on all of the Internet and every book written, I'm not sure that still seems infeasible.
It's called "The science of cycology: Failures to understand how everyday objects work" by Rebecca Lawson.
https://link.springer.com/content/pdf/10.3758/bf03195929.pdf
If you build React in C++ and Rust, even if the framework is there, you'll likely need to write your components in C++/Rust. That is a difficult problem. There are actually libraries out there that allow you to build web UI with Rust, although they are for web (+ HTML/CSS) and not specifically CLI stuff.
So someone needs to create such a library that is properly maintained and such. And you'll likely develop slower in Rust compared to JS.
These companies don't see a point in doing that. So they just use whatever already exists.
If you're looking at overall profitability, you include everything
If you're talking about unit economics of producing tokens, you only include the marginal cost of each token against the marginal revenue of selling that token
PS - I appreciate you coming here and commenting!
The amount of non-critical bugs all over the place is at least a magnitude larger than of any software I was using daily ever.
Plenty of built in /commands don't work. Sometimes it accepts keystrokes with 1 second delays. It often scrolls hundreds of lines in console after each key stroke Every now and then it crashes completely and is unrecoverable (I once have up and installed a fresh wls) When you ask it question in plan mode it is somewhat of an art to find the answer because after answering the question it will dump the whole current plan (free screens of text)
And just in general the technical feeling of the TUI is that of a vibe coded project that got too big to control.
Opencode's core is actually written in zig, only ui orchestration is in solidjs. It's only slightly slower to load than neo-vim on my system.
All the labs seem to do very different post training. OpenAI focuses on search. If it's set to thinking, it will search 30 websites before giving you an answer. Claude regularly doesn't search at all even for questions it obviously should. It's postraining seems more focused on "reasoning" or planning - things that would be useful in programming where the bottleneck is: just writing code without thinking how you'll integrate it later and search is mostly useless. But for non coding - day to day "what's the news with x" "How to improve my bread" "cheap tasty pizza" or even medical questions, you really just want a distillation of the internet plus some thought
I used to think of Gemini as the lead in terms of Portuguese, but recently subjectively started enjoying Claude more (even before Opus 4.5).
In spite of this, ChatGPT is what I use for everyday conversational chat because it has loads of memories there, because of the top of the line voice AI, and, mostly, because I just brainstorm or do 1-off searches with it. I think effectively ChatGPT is my new Google and first scratchpad for ideas.
Couple that with all the automatic processes in our mind (filled in blanks that we didn't observe, yet will be convinced we did observe them), hormone states that drastically affect our thoughts and actions..
and the result? I'm not a big believer in our uniqueness or level of autonomy as so many think we have.
With that said i am in no way saying LLMs are even close to us, or are even remotely close to the right implementation to be close to us. The level of complexity in our "stack" alone dwarfs LLMs. I'm not even sure LLMs are up to a worms brain yet.
By replacing the names with something unique, you'll get much more certainty.
I mean, you can try, but it won't be a definitive answer as to whether that knowledge truly exists or doesn't exist as it is encoded into the NN. It could take a lot of context from the books themselves to get to it.
Did they solve the "lost in the middle" problem? Proof will be in the pudding, I suppose. But that number alone isn't all that meaningful for many (most?) practical uses. Claude 4.5 often starts reverting bug fixes ~50k tokens back, which isn't a context window length problem.
Things fall apart much sooner than the context window length for all of my use cases (which are more reasoning related). What is a good use case? Do those use cases require strong verification to combat the "lost in the middle" problems?
No one (approximately) outside of Anthropic knows since the chat template is applied on the API backend; we only known the shape of the API request. You can get a rough idea of what it might be like from the chat templates published for various open models, but the actual details are opaque.
Just curious, which formats and how they compare, storage wise?
Also, are you sure it's not just moving the goalposts to CPU usage? Frequently more powerful compression algorithms can't be used because they use lots of processing power, so frequently the biggest gains over 20 years are just... hardware advancements.
Why don't run the commands yourself then?
A second pass over the transcript afterward catches what the agent missed. Doesn't need the agent to notice anything. Just reads the conversation cold.
The two approaches have completely different failure modes, which is why you need both. What nobody's built yet is the loop where the second pass feeds back into the memory for the next session.
But there are many different rendering libraries you can use with React, including Ink, which is designed for building CLI TUIs..
- Recipes and cooking: ChatGPT just has way more detailed and practical advice. It also thinks outside of the box much more, whereas Claude gets stuck in a rut and sticks very closely to your prompt. And ChatGPT's easier to understand/skim writing style really comes in useful.
- Travel and itinerary: Again, ChatGPT can anticipate details much more, and give more unique suggestions. I am much more likely to find hidden gems or get good time-savers than Claude, which often feels like it is just rereading Yelp for you.
- Historical research: ChatGPT wins on this by a mile. You can tell ChatGPT has been trained on actual historical texts and physical books. You can track long historical trends, pull examples and quotes, and even give you specific book or page(!) references of where to check the sources. Meanwhile, all Claude will give you is a web search on the topic.
I sometimes vibe code in polish and it's as good as with English for me. It speaks a natural, native level Polish.
I used opus to translate thousands of strings in my app into polish, Korean, and two Chinese dialects. Polish one is great, and the other are also good according to my customers.
Gemini is the most fluent in the highest number of human languages and has been for years (!) at this point - namely since Gemini 1.5 Pro, which was released Feb 2024. Two years ago.
So it might be there, by predcondiditioning latent space to the area of harry potter world, you make it so much more probable that the full spell list is regurgitated from online resources that were also read, while asking naive might get it sometimes, and sometimes not.
the books act like a hypnotic trigger, and may not represent a generalized skill. Hence why replacing with random words would help clarify. if you still get the origional spells, regurgitation confirmed, if it finds the spells, it could be doing what we think. An even better test would be to replace all spell references AND jumble chapters around. This way it cant even "know" where to "look" for the spell names from training.
full transcript: pastebin.com/sMcVkuwd
I shut it down a while ago because the number of bots overtake traffic. The site had quite a bit of human traffic (enough to bring in a few hundred bucks a month in ad revenue, and a few hundred more in subscription revenue), however, the AI scrapers really started ramping up and the only way I could realistically continue would be to pay a lot more for hosting/infrastructure.
I had put a ton of time into building out content...thousands of hours, only to have scrapers ignore robots, bypass cloudflare (they didn't have any AI products at the time), and overwhelm my measly infrastructure.
Even now, with the domain pointed at NOTHING, it gets almost 100,000 hits a month. There is NO SERVER on the other end. It is a dead link. The stats come from Cloudflare, where the domain name is hosted.
I'm curious if there are any lawyers who'd be willing to take someone like me on contingency for a large copyright lawsuit.
https://ollama.com/library/gemini-3-pro-preview
You can run it on your own infra. Anthropic and openAI are running off nvidia, so are meta(well supposedly they had custom silicon, I'm not sure if its capable of running big models) and mistral.
however if google really are running their own inference hardware, then that means the cost is different (developing silicon is not cheap...) as you say.
The Sokal paper was a hoax so it doesn’t meet the criteria.
This is just regular tech debt that happens from building something to $1bn in revenue as fast as you possibly can, optimize later.
They're optimizing now. I'm sure they'll have it under control in no time.
CC is an incredible product (so is codex but I use CC more). Yes, lately it's gotten bloated, but the value it provides makes it bearable until they fix it in short time.
chasing down a few sources in that article leads to articles like this at the root of claims[1], which is entirely based on information "according to a person with knowledge of the company’s financials", which doesn't exactly fill me with confidence.
[1] https://www.theinformation.com/articles/openai-getting-effic...
VC firms, even ones the size of Softbank, also literally just don't have enough capital to fund the planned next-generation gigawatt-scale data centers.
You always have to question these benchmarks, especially when the in-house researchers can potentially game them if they wanted to.
Which is why it must be independent.
[0] https://gizmodo.com/meta-cheated-on-ai-benchmarks-and-its-a-...
To me this looks likes some creative bookkeeping, or even wishful thinking. It is like if SpaceX omits the price of the satellites when calculating their profits.
It's worth checking different versions of Claude Code, and updating your tools if you don't do it automatically. Also run the same prompts through VS Code, Cursor, Claude Code in terminal, etc. You can get very different model responses based on the system prompt, what context is passed via the harness, how the rules are loaded and all sorts of minor tweaks.
If you make raw API calls and see behavioural changes over time, that would be another concern.
I hope my unused gym subscription pays back the good karma :-)
We had access to the eval data (since we funded it), but we didn't train on the data or otherwise cheat. We didn't even look at the eval results until after the model had been trained and selected.
https://claude.ai/public/artifacts/14a23d7f-8a10-4cde-89fe-0...
There are estimated to be 100 or so prepositions in English. That gets you to 4 trillion combinations.
- https://github.com/ratatui/ratatui
The following are true:
- In our API, we don't change model weights or model behavior over time (e.g., by time of day, or weeks/months after release)
- Tiny caveats include: there is a bit of non-determinism in batched non-associative math that can vary by batch / hardware, bugs or API downtime can obviously change behavior, heavy load can slow down speeds, and this of course doesn't apply to the 'unpinned' models that are clearly supposed to change over time (e.g., xxx-latest). But we don't do any quantization or routing gimmicks that would change model weights.
- In ChatGPT and Codex CLI, model behavior can change over time (e.g., we might change a tool, update a system prompt, tweak default thinking time, run an A/B test, or ship other updates); we try to be transparent with our changelogs (listed below) but to be honest not every small change gets logged here. But even here we're not doing any gimmicks to cut quality by time of day or intentionally dumb down models after launch. Model behavior can change though, as can the product / prompt / harness.
ChatGPT release notes: https://help.openai.com/en/articles/6825453-chatgpt-release-...
Codex changelog: https://developers.openai.com/codex/changelog/
Codex CLI commit history: https://github.com/openai/codex/commits/main/
ChatGPT-5.2-Codex follows directions to ensure a task [bead](https://github.com/steveyegge/beads) is opened before starting a task and to keep it updated almost to a fault. Claude-Opus-4.5 with the exact same directions, forgets about it within a round or two. Similarly, I had a project that required very specific behaviour from a couple functions, it was documented in a few places including comments at the top and bottom of the function. Codex was very careful in ensuring the function worked as was documented. Claude decided it was easier to do the exact opposite, rewrote the function, the comments, and the documentation to saynit now did the opposite of what was previously there.
If I believed a LLM could be spiteful, I would've believed it on that second one. I certainly felt some after I realised what it had done. The comment literally said:
// Invariant regardless of the value of X, this function cannot return Y
And it turned it into: // Returns Y if X is trueAccuracy can decreases at large context sizes. OpenAI's compaction handles this better than anyone else, but it's still an issue.
If you are seeing this kind of thing start a new chat and re-run the same query. You'll usually see an improvement.
Though I'm wary about that being a magic bullet fix - already it can be pretty "selective" in what it actually seems to take into account documentation wise as the existing 200k context fills.
Diffing and only updating the parts of the TUI which have changed does make sense if you consider the alternative is to rewrite the entire screen every "frame". There are other ways to abstract this, e.g. a library like tqmd for python may well have a significantly more simple abstraction than a tree for storing what it's going to update next for the progress bar widget than claude, but it also provides a much more simple interface.
To me it seems more fair game to attack it for being written in JS than for using a particular "rendering" technique to minimise updates sent to the terminal.
What's apparently happening is that React tells Ink to update (re-render) the UI "scene graph", and Ink then generates a new full-screen image of how the terminal should look, then passes this screen image to another library, log-update, to draw to the terminal. log-update draws these screen images by a flicker-inducing clear-then-redraw, which it has now fixed by using escape codes to have the terminal buffer and combine these clear-then-redraw commands, thereby hiding the clear.
An alternative solution, rather than using the flicker-inducing clear-then-redraw in the first place, would have been just to do terminal screen image diffs and draw the changes (which is something I did back in the day for fun, sending full-screen ASCII digital clock diffs over a slow 9600baud serial link to a real terminal).
I wish there was a "Reset" button to go back to the original position.
Where are you in Poland?
This is interesting to me. I always switch to English automatically when using Claude Code as I have learned software engineering on an English speaking Internet. Plus the muscle memory of having to query google in English.
https://www.dbresearch.com/PROD/RI-PROD/PROD0000000000611818...
Tools like https://github.com/badlogic/pi-mono implement most of the functionality Claude Code has, even adding loads of stuff Claude doesn't have and can actually scroll without flickering inside terminal, all built by a single guy as a side project. I guess we can't ask that much from a 250B USD company.
Be careful with the coffee.
In that hypothetical second is freaking fascinating. It's a denoising algorithm, and then a bunch of linear algebra, and out pops a picture of a pelican on a bicycle. Stable diffusion does this quite handily. https://stablediffusionweb.com/image/6520628-pelican-bicycle...
https://www.freepik.com/free-vector/cyclist_23714264.htm
https://www.freepik.com/premium-vector/bicycle-icon-black-li...
Or missing/broken pedals:
https://www.freepik.com/premium-vector/bicycle-silhouette-ic...
https://www.freepik.com/premium-vector/bicycle-silhouette-ve...
http://freepik.com/premium-vector/bicycle-silhouette-vector-...
Wasnt GTA 5 famous for very long start up time and turns out there some bug which some random developer/gamer found out and gave them a fix?
Most Gamers didnt care, they still played it.
I feel like you need to be making a bigger statement about this. If you go onto various parts of the Net (Reddit, the bird site etc) half the posts about AI are seemingly conspiracy theories that AI companies are watering down their products after release week.
Maybe a dumb question but does this mean model quality may vary based on which hardware your request gets routed to?
They can both write fairly good idiomatic code but in my experience opus 4.5 is better at understanding overall project structure etc. without prompting. It just does things correctly first time more often than codex. I still don't trust it obviously but out of all LLMs it's the closest to actually starting to earn my trust
(I work at OpenAI)
Regardless I tend to use new chats often.
I wrote a guide to deciphering that kind of language a couple of years ago: https://simonwillison.net/2023/Nov/22/deciphering-clues/
That really matters. If they are making a margin on inference they could conceivably break even no matter how expensive training is, provided they sign up enough paying customers.
If they lose money on every paying customer then building great products that customers want to pay for them will just make their financial situation worse.
Most modern UI systems are inspired by React or a variant of its model.
I've had this perceived experience so many times, and while of course it's almost impossible to be objective about this, it just seem so in your face.
I don't discard being novelty plus getting used to it, plus psychological factors, do you have any takes on this?
https://www.reddit.com/r/OpenAI/comments/1qv77lq/chatgpt_low...
[1]: https://github.com/Vibecodelicious/llm-conductor/blob/main/O...
I've tried them all and I keep coming back to Claude Code because it's just so much more capable and useful than the others.
300MB of RAM for a CLI app that reads files and makes HTTP calls is crazy. A new emacs GUI instance is like 70MB and that’s for an entire text editor with a GUI.
The terminal does not have a render phase (or an update state phase). You either refresh the whole screen (flickering) or control where to update manually (custom engine, may flicker locally). But any updates are sequential (moving the cursor and then sending what to be displayed), not at once like 2D pixel rendering does.
So most TUI only updates when there’s an event to do so or at a frequency much lower than 60fps. This is why top and htop have a setting for that. And why other TUI software propose a keybind to refresh and reset their rendering engines.
I mostly use Polish when I pair-vibe-code with my kids
I did think its a bit weird that they had open-weighted it
I check context use percentage, and above ~70% I ask it to generate a prompt for continuation in a new chat session to avoid compaction.
It works fine, and saves me from using precious tokens for context compaction.
Maybe you should try it.
Originally from Wrocław, but don't live in Poland anymore
> Without a clear indicator of the author's intent, any parodic or sarcastic expression of extreme views can be mistaken by some readers for a sincere expression of those views.
The intention was purely making the product experience better, based on common feedback from people (including myself) that wait times were too long. Cost was not a goal here.
If you still want the higher reliability of longer thinking times, that option is not gone. You can manually select Extended (or Heavy, if you're a Pro user). It's the same as at launch (though we did inadvertently drop it last month and restored it yesterday after Tibor and others pointed it out).
That said, there are definitely cases where we intentionally trade off intelligence for greater efficiency. For example, we never made GPT-4.5 the default model in ChatGPT, even though it was an awesome model at writing and other tasks, because it was quite costly to serve and the juice wasn't worth the squeeze for the average person (no one wants to get rate limited after 10 messages). A second example: in our API, we intentionally serve dumber mini and nano models for developers who prioritize speed and cost. A third example: we recently reduced the default thinking times in ChatGPT to speed up the times that people were having to wait for answers, which in a sense is a bit of a nerf, though this decision was purely about listening to feedback to make ChatGPT better and had nothing to do with cost (and for the people who want longer thinking times, they can still manually select Extended/Heavy).
I'm not going to comment on the specific techniques used to make GPT-5 so much more efficient than GPT-4, but I will say that we don't do any gimmicks like nerfing by time of day or nerfing after launch. And when we do make newer models more efficient than older models, it mostly gets returned to people in the form of better speeds, rate limits, context windows, and new features.
It is not at all a small app, at least as far as UX surface area. There are, what, 40ish slash commands? Each one is an opportunity for bugs and feature gaps.
I am not protecting anthropic[0], but how come in this forum every day I still see these "it's simple" takes from experienced people - I have no idea. There are who knows how many terminal emulators out there, with who knows how many different configurations. There are plugins for VSCode and various other editors (so it's not only TUI).
Looking at issue tracker ~1/3 of issues are seemingly feature requests[1].
Do not forget we are dealing with LLMs and it's a tool, which purpose and selling point that it codes on ANY computer in ANY language for ANY system. It's very popular tool run each day by who knows how many people - I could easily see, how such "relatively simple" tool would rack up thousands of issues, because "CC won't do weird thing X, for programming language Y, while I run from my terminal Z". And because it's LLM - theres whole can of non deterministic worms.
Have you created an LLM agent, especially with moderately complex tool usage? If yes and it worked flawlessly - tell your secrets (and get hired by Anthropic/ChatGPT/etc). Probably 80% of my evergrowing code was trying to just deal with unknown unknowns - what if LLM invokes tool wrong? How to guide LLM back on track? How to protect ourselves and keep LLM on track if prompts are getting out of hand or user tries to do something weird? The problems were endless...
Yes the core is "simple", but it's extremely deep can of worms, for such successful tool - I easily could see how there are many issues.
Also super funny, that first issue for me at the moment is how user cannot paste images when it has Korean language input (also issue description is in Korean) and second issue is about input problems in Windows Powershell and CMD, which is obviously total different world compared to POSIX (???) terminal emulators.
[0] I have very adverse feelings for mega ultra wealthy VC moneys...
[1] https://github.com/anthropics/claude-code/issues?q=is%3Aissu...
Once the honeymoon wears off, the tool is the same, but you get less satisfaction from it.
Just a guess! Not trying to psychoanalyze anyone.
I don't thing my ability read, understand, and write code is going anywhere though.
Neat tool BTW, I'm in the market for something like that.
At this point I just think the "success" of many AI coding agents is extremely sector dependent.
Going forward I'd love to experiment with seeing if that's actually the problem, or just an easy explanation of failure. I'd like to play with more controls on context management than "slightly better models" - like being able to select/minimize/compact sections of context I feel would be relevant for the immediate task, to what "depth" of needed details, and those that aren't likely to be relevant so can be removed from consideration. Perhaps each chunk can be cached to save processing power. Who knows.
But I kinda see your point - assuming from you're name you're not just a single purpose troll - I'm still not sold on the cost effectiveness of the current generation, and can't see a clear and obvious change to that for the next generation - especially as they're still loss leaders. Only if you play silly games like "ignoring the training costs" - IE the majority of the costs - do you get even close to the current subscription costs being sufficient.
My personal experience is that AI generally doesn't actually do what it is being sold for right now, at least in the contexts I'm involved with. Especially by somewhat breathless comments on the internet - like why are they even trying to persuade me in the first place? If they don't want to sell me anything, just shut up and keep the advantage for yourselves rather than replying with the 500th "You're Holding It Wrong" comment with no actionable suggestions. But I still want to know, and am willing to put the time, effort and $$$ in to ensure I'm not deluding myself in ignoring real benefits.
I'm not sure what the history of log-output has been or why it does the clear-before-draw. Another simple alternative to pre-clear would have been just to clear to end of line (ESC[0K) after each partial line drawn.
BUT, I meant a button to restart after a few moves. Anyways, cool!
The complex and magic parts are around finding contextual things to include, and I'd be curious how many are that vs "forgot to call clear() in the TUI framework before redirecting to another page".
If that’s the most complex TUI (yeah, new acronym) you’ve seen, you have a lot to catch up on!
I am talking rendering image/video in the terminal!
Its the best way to find out if there's a mismatch between value and effort, and its the best way to learn and discuss the fundamental nature of complexity.
Similar to your argument, I can name countless of situations where developers absolutely adamantly insisted that something was very hard to do, only for another developer to say "no you can actually do that like this* and fix it in hours instead of weeks.
Yes, making a TUI from scratch is hard, no that should not affect Claude code because they aren't actually making the TUI library (I hope). It should be the case that most complexity is in the model, and the client is just using a text-based interface.
There seems to be a mismatch of what you're describing would be issues (for instance about the quality of the agent) and what people are describing as the actual issues (terminal commands don't work, or input is lost arbitrarily).
That's why verbalizing is important, because you are thinking about other complexities than the people you reply to.
That's not a criticism of these frameworks -- there are constraints coming from Rust and from the scope of the frameworks. They just can't offer a React like experience.
But I am sure that companies like Anthropic or OpenAI aren't going to build their application using these libraries, even with AI.
A fundamental part of the job is being able to break down problems from large to small, reason about them, and talk about how you do it, usually with minimal context or without deep knowledge in all aspects of what we do. We're abstraction artists.
That question wouldn't be fundamentally different than any other architecture question. Start by drawing big, hone in on smaller parts, think about edge cases, use existing knowledge. Like bread and butter stuff.
I much more question your reaction to the joke than using it as a hypothetical interview question. I actually think it's good. And if it filters out people that have that kind of reaction then it's excellent. No one wants to work with the incurious.
I'm also creating one that is similar, but purpose-built for making the plans that this setup can orchestrate. It still needs some tweaking to get agents to follow it better - it still takes additional prompting to nudge it down the proper path. But I've had similar benefits - sending plans through this adversarial review loop has yielded significant improvements in final output.
https://github.com/Vibecodelicious/llm-conductor/blob/main/p...
Cue I could build it in a weekend vibes, I built my own agent TUI using the OpenAI agent SDK and Ink. Of course it’s not as fleshed out as Claude, but it supports git work trees for multi agent, slash commands, human in the loop prompts and etc. If I point it at the Anthropic models it more or less produces results as m good as the real Claude TUI.
I actually “decompiled” the Claude tools and prompts and recreated them. As of 6 months ago Claude was 15 tools, mostly pretty basic (list for, read file, wrote file, bash, etc) with some very clever prompts, especially the task tool it uses to do the quasi planning mode task bullets (even when not in planning mode).
Honestly the idea of bringing this all together with an affordable monthly service and obviously some seriously creative “prompt engineers” is the magic/hard part (and making the model itself, obviously).
› commit this, **SKIP BEADS**
• Ran git status -sb
└ ## main...origin/main [ahead 4]
M containers/frigate.nix
?? .beads/bd.sock.startlock
• I see an untracked .beads/bd.sock.startlock file that might be normal but needs clarification. I also note the requirement to include a bead and confirm bead readiness
before proceeding, so I'll ask whether to create the bead and if the untracked file should be included in the commit.
───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
• I can’t skip beads for this repo. The AGENTS.md rules are explicit: no work (including commits) without an open bead. Please confirm you want me to create a bead for
this commit.
I don't know what's wrong with your Codex, but mine can't bring itself to break the rules.It’s no different than asking for the architecture of the power supply or the architecture of the network switch that serves the building. Brilliant software engineers are going to have gaps on non-software things.
But if that's what they were going for it should be something on a completely different and more abstract topic like "develop a method for emptying your swimming pool without electricity in under four hours"
> There seems to be a mismatch of what you're describing would be issues (for instance about the quality of the agent) and what people are describing as the actual issues (terminal commands don't work, or input is lost arbitrarily).
I just named couple examples I've seen in issue tracker and `opencode` on quick skim has many similar issues about inputs and rendering issues in terminals too.
> Similar to your argument, I can name countless of situations where developers absolutely adamantly insisted that something was very hard to do, only for another developer to say "no you can actually do that like this* and fix it in hours instead of weeks.
Good example, as I have seen this too, but for this case, let's first see `opencode`/`claude` equivalent written in "two weeks" and that has no issues (or issues are fixed so fast, they don't accumulate into thousands) and supports any user on any platform. People building stuff for only themselves (N=1) and claiming the problem is simple do not count.
---------
Like the guy two days ago claiming that "the most basic feature"[1] in an IDE is a _terminal_. But then we see threads in HN popping up about Ghostty or Kitty or whatever and how those terminals are god-send, everything else is crap. They may be right, but that software took years (and probably tens of man-years) to write.
What I am saying is that just throwing out phrases that something is "simple" or "basic" needs proof, but at the time of writing I don't see examples.
This is indeed a nonsensical timeframe.
> What I am saying is that just throwing out phrases that something is "simple" or "basic" needs proof, but at the time of writing I don't see examples.
Fair point.
> This is indeed a nonsensical timeframe.
Sorry - I should have explained that it's an ironic hyperbole. Was thinking quotes will be enough, but Poe's law strikes again.